
c

h

Final Report
Automated Extraction of Flow Features

NASA Marshall Space Flight Center Grant #NAG8- 1872

Robert Haimes
Department of Aeronautics & Astronautics

Massachusetts Institute of Technology
haimes@mit .edu

June 10, 2005

1 Introduction

Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design
process of most fluid handling devices. In order to efficiently and effectively use the results of a
CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD
simulation including pre-processing, interim-processing, and post-processing, to interpret the results.
Each of these stages requires visualization tools that allow one to examine the geometry of the device,
as well as the partial or final results of the simulation. An engineer will typically generate a series
of contour and vector plots to better understand the physics of how the fluid is interacting with the
physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and
vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues
to increase the need for automated feature extraction capabilities has become vital.

In the past, feature extraction and identification were interesting concepts, but not required in
understanding the physics of a steady flow field. This is because the results of the more traditional
tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they
could be represented to the investigator. These tools worked and properly conveyed the collected
information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator
does not have the luxury of spending time scanning only one "snapshot" of the simulation. Au-
tomated assistance is required in pointing out areas of potential interest contained within the flow.
This must not require a heavy compute burden (the visualization should not significantly slow down
the solution procedure for co-processing environments). Methods must be developed to abstract the
feature of interest and display it in a manner that physically makes sense.

1

2 A Secondary Flow Surface

2.1 Definition

The concept of secondary flow in turbomachinery is not well defined, but commonly referenced.
Some attempts at rigorously defining this idea include:

0 ... component of absolute vorticity in the direction of the relative streamline [Hawthorne, 19741

0 Secondary flow in broad terms means flow at right angles to the intended primary flow [Cump-
sty, 19891

0 Due to viscous effects, endwalls divert primary flow produced by blades and vanes, to give rise
to what has come to be called secondary flow [Bradshaw, 19961

Of the three definitions listed above only [Cumpsty, 19891 provides a definition that could be made
operational. What is required is the notion of primary flow, which we can define. Unfortunately by
the time we get a CFD solution the notion of “intended” is lost.

The desire to view perturbations from the primary flow direction can give insight into the viscous,
reverse flow and vortical effects that deviate from the design. To this end it is obviously desirable to
be able to generate 2D vector plots that display the secondary flow given a traditional CFD solution.

Secondary flow plots are usually displayed in a passage between blades or just downstream from
the trailing edge. The arrows are generated from a frame of reference that is relative to the passage
in question (i.e. absolute for fixed rows and moving for rotors). This obviously points,to a difficulty
in areas between stators and rotors: what is the appropriate frame of reference?

2.2 Algorithm

I t would clearly be desirable to have a scheme that could maximize the primary flow through a
constructed surface. This could be done by defining a pivot point in the channel that reflects the
some centroid of the passage or flow. A surface that goes through the point can then be generated.
By adjusting the position of this surface the best fit can be found. This surface can then be used to
view the secondary flow by projecting the vector field data onto the surface.

2.2.1 Primary Flow definition

The goal here is to calculate the mass-averaged quantities in the channel. This should be done on a
grid plane or a cut through the passage that is orientated so that all bounds of the cut are walls (if
possible). The following can be done with either a plane (all surface facets have the same normal n)
or an analytical surface where the normal for cut facets can change.

2

c

.

Compute surface integrals:

where is the mass-averaged flux, qo is the mean velocity and 20 is the mass-averaged center
of the flow.

2.2.2 Newton-like Iteration to Maximize Primary Flow

By selecting various cuts that pass through ,fo we can adjust the normal (in the case of a simple
plane) in an iterative loop so that we maximize q z t (the velocity perpendicular to the plane):

n'= I401

Note that new surface integrals are recomputed during each iteration. This will also change the
position 20.

Using a planar cut this technique takes about 3 to 4 iterations to converge (i.e. the normals
returned do not differ by some small factor). This Newton-like convergence is most always seen
unless the planar cut is adjusted so that a new portion of the flow field is exposed.

When converged, this provides a view of the data that displays secondary flow when the normal
velocity component is removed.

2.3 Discussion

In practice this algorithm works well but did require a number of operational adjustments. These
included

2.3.1 Passage of Interest

The fast cut algorithms are based on Marching Cubes and are performed on a 3D element at a time.
The result is a set of disjoint polygons that reflect the portion of the surface that cuts through the
cell. The notion of where in the domain the fragments come from is usually lost. So if the simulation
contains more than a single passage the cut data can easily contain fragments from elsewhere in the
simulation. This will corrupt the primary flow calculation in that we are no longer focused on a
single passage.

3

The solution is to reconnect the fragments into complete (and bounded) surfaces. Once this is
done a seed point can be located within the bounded surfaces so that one can be selected. Only
those polygons that are within the selected region are used in the calculations.

The cut algorithm used constructs the surface in a Finite-Element sense (that is, a list of nodes
that reflect the 3D edges being cut is constructed and the polygons refer to indices in that list). The
reconnection is performed via a polygon side-matching algorithm based on the indices (not floating-
point locations). This is unique and robust. Any side that is seen by two polygons is interior to the
region. A side with only a single polygon is bounding the region.

2.3.2 Multi-block simulations

In multi-block simulations the volumes represented by the blocks can abut or overlap. The individual
cell definitions are usually block specific so that even if the blocks maintain a larger contiguous
volume, it is usually not apparent by the time one looks at the fragments from the Murchzng Cubes
results. When reconnecting the regions the results will reflect the block boundaries and not the
actual bounds of the cut. The regions need to be placed back together.

When performing streamlining, it is traditional to use the “IBlank” data to inform the software
how the blocks are connected. When one pierces a cell on a face where the “IBlank” data indicates
that a jump to another block is required, the “IBlank” index contains the accepting block. Initially,
this data was used to attempt to flood the region from the target surface fragments to connecting
blocks. This was found to be unreliable.

A much more expensive technique was developed. This involved producing a bounding-box
around each region as a first step. All regions (that have not been included) and have bounding
boxes that overlap the start region are examined. Each point on the exterior of the start region is
compared to all fragments of the candidate regions. If it is found that any point is interior, then the
new region is considered part of the calculation and this process is then recursively applied where
this candidate becomes the start region.

In this way the seed point fills all connecting and overlapping areas and the calculation can
proceed on that “passage”.

2.3.3 Tip leakage simulations

When performing the secondary flow algorithm on a simulation that displays tip leakage there is
a natural connection between passages. With the algorithm described above there will be flooding
into other passages. This will corrupt the primary flow calculation.

This problem has been taken care of if the simulation is multi-block and there are individual
blocks that represent the tip flow regions. The flooding can be “dammed” by informing the technique
not to use certain blocks as candidates.

4

2.3.4 Frame of reference

In multi-stage calculations care needs to be taken so that algorithm sees data in a consistent frame
of reference. This means that when looking at the secondary flow in a rotor, all velocity field values
should be in the rotating frame. It is important that the data in the stators be transformed so that
the technique does not see any discontinuities in the velocity field.

This then means that if one were to traverse the machine from upstream to down that there will
be a number of changes of reference. These should be done while the resultant planar cut is in the
zone between blades.

2.4 API addition to FX

The Feature extraction toolkit F X contains an infrastructure that can handle the various different
methods that a CFD solution can be discretized. This toolkit, unlike most visualization systems, is
lightweight because no drawing and/or GUI functions are supported. In general, the input is the
CFD solution and output is various forms of geometry.

2.4.1 F X M e a n F l o w

F X _ M E A N F L O W (X P O S , VNORM, DAM)
This subroutine given the start position and plane normal computes the mass-averaged “center” of
flow and the mass averaged velocity.

float XPOS[3]

float VNORM[S]

int *DAM

On input the position that sets the plane given the normal
VNORM. On output, the mass averaged position on the pla-
nar cut is returned.

On input the normal that sets the family of planes to use to
produce the cut. On output VNORM is filled with the mass
averaged velocity through the cut.

Pointer to the status of each block (for multi-block cases) to
act as a “dam” for the flooding procedure. Zero indicates that
flooding through the block is OK, a one is the flag to NOT use
this block. NOTE: may be NULL to specify no “damming”.

2.5 Status

A paper was written and presented on this topic at the AIAA Aerospace Sciences Conference and
Exhibition in January of 2005. The paper is appended to the end of this report.

This feature technique has also been passed on to General Electric. The people responsible for
the visualization codes that both GE Aircraft Engines and GE Power Generation use are located
at GE Global Research. Stuart Connell manages this effort and he has incorporated the Secondary
Flow finder into NPLOTSD (their visualization ”workhorse” code). The continual feedback is that
this feature is useful.

5

3 Field Interpolation

There was an effort a t MSFC to be able to accurately interpolate the data from one mesh onto
another where the nodal positions do not match. This interpolation can be performed in a number
of ways (this is due to the fact that finite volume/finite difference CFD does not actually define a
cell-based interpolant). If the interpolation is done without some accuracy, then the solution on the
target mesh may be far from converged (even if the source solution was converged and the geometries
are the same). This situation becomes worse in meshes dominated by boundary layer stretching -
errors in these regions are easy to generate and have a significant effect.

The interpolation routines used for streamlining and unsteady particle tracing were applied to
this mesh-to-mesh problem with great success.

4 Rendering of Higher-Order Finite Elements

Numerical methods are widely used throughout academia and industry to solve physical problems
when experimental data is difficult to obtain. The details of these methods can vary greatly, but they
all essentially solve a set of governing equations by discretizing the domain of interest and solving
a n analogous formulation at the discrete points or nodes. Once a solution has been generated for
these nodes, then data over the entire domain can be obtained by interpolation. The simplest way
to interpolate is to assume linearity within each cell based on the vertices that support that element.
There are a number of ways available to then view this data, since most visualization techniques are
based on the assumption of linear interpolation. However, there are many situations in which it is
advantageous to solve the discrete equations using a non-linear basis or higher order elements. This
can mean using anything from the standard polynomial Lagrange basis to a scheme as complicated
as a hierarchical basis or spectral elements. One obvious difficulty with using higher order numerical
methods is that there is no simple way to visualize the data in its native form (since most current
visualization software uses a linear basis). This renders higher order methods much less useful.
Understanding of numerical results and new insight is often only possible when one can accurately
visualize the massive amounts of data produced.

Accurate rendering of nonlinear data cannot be performed efficiently using only the standard
OpenGL API, since all OpenGL primitives are inherently linear. Higher order data can be interpo-
lated and rendered quite simply and quickly by utilizing the flexibility of modern graphical processing
units (GPUs). In addition to rendering surfaces, one important technique used in scientific visual-
ization is the generation planar cuts through 3D field data. This can be accomplished through a
combination of selective refinement of the elements and accessing the programmable shaders inside
the GPU.

4.1 Discontinuous Finite Elements

One popular group of numerical techniques, the Finite Element Methods (FEM), are particularly
convenient when dealing with complex geometries or unstructured computational meshes. The FEM

6

simplifies the solution scheme by mapping every element in the mesh to a master reference element,
and then scalar interpolation can be performed using shape functions as a basis.

When rendering continuous data, neighboring elements share both the location and field data
of common nodes. The use of collected primitives (polytriangles, quad meshes and etc.) can speed
up the display time since the support data needs to be passed along the graphics pipeline fewer
times. However, the direct goal of this research was to visualize flow solutions generated using the
Discontinuous Galerkin (DG) Method. As such, any scheme developed should be able to naturally
handle discontinuities (at element faces) in the scalar fields being visualized. The simplest way to
accomplish this is for each element to independently store data for all of its basis nodes. Even
though the physical location of shared nodes is the same between neighboring elements, nodes must
be respecified for each element in which they appear. The goal is to have a method that allows for
easy handling of both continuous and discontinuous data with the acknowledgement that there will
be some lose of the speed benefits in comparison to the use of collected primitives for continuous
data.

4.2 Visualization Tools

The status of the implementation of commonly used visualization tools for higher-order elements is
listed below.

4.2.1 Surface Rendering

The coloring (and lighting) of the surface patches is done in an accurate manner. What is not
properly handled, at this point, are curved triangles. OpenGL only rasterizes planar fragments,
therefore in order to precisely render curved patches, a method to cover the shadow of the patch is
required. This geometric fragment is view dependent and therefore changes as the view matrix is
adjusted. This portion of the algorithm has not been completed.

What has been accomplished is that a p l , p z and p3 scalar evaluators have been implemented.
Unlike OpenGL where interpolation is performed in color space, here proper scalar interpolation
is computed in the graphics hardware and the color applied from a colormap stored in texture
memory. Once the color has been found, the same interpolation can be performed on the geometry.
This can give an accurate normal on the curved patch. This normal is the one that then gets applied
for the lighting calculations. Also, the depth is properly adjusted (and not taken from the linear
interpolation of the fragment). This does a remarkably good job in providing a visual representation
of the patch even though it is based on the linear raster positions.

.

4.2.2 Planar Cuts

A scheme to properly render cutplanes has been implemented. Please see the attached paper Ren-
dering Planar Cuts Through Quadratic and Cubic Finite Elements. This paper has been published
and presented at the IEEE Visualization conference in October 2004.

7

.

4.2.3 Iso-surfaces

Preliminary efforts have begun. The algorithms to render each type of intersection for linear elements
are the same as with planar cuts. The crucial difference is that iso-surface will, in almost all cases,
be guaranteed not to be planar.

However, it may be possible to render the isosurface with scalar value, s*, by bounding it with
linear primitives. Based on screen position, zs, of each pixel on the bounding shadow, the depth
is adjusted until the point on the isosurface, 2, is found such that 2, lies on top of 2 (i.e. 2 and
x, have the same screen coordinates but different depths). To find 2, 1s - s*I is first minimized by
performing a search of points inside the element that lie beneath zs, then the fragment can rejected
or drawn based on whether or not s = S*. Performing this search would be relatively expensive,
so acceptable values of s will lie close to s* within some bounds set by the accuracy of the search.
Under some viewing transforms, the isosurface can curve behind itself, which means there can be
multiple solutions, z, that all lie on top of x,. In this case, the several solutions should be compared
using the depth test to determine which one is displayed.

How are the bounding shadow primitives determined to render the isosurface? The faces of the
congruent tetrahedron used to generate the cutplane shadow would certainly cover the isosurface
intersection, since it captures the entire element by design. But using those triangles could produce
many extraneous fragments.

4.2.4 Steamlines

This has not been started. For continuous data higher order interpolation is not a problem. The
normal streamline and unsteady particle tracer is only a function of the velocity field (at optionally
its gradient) at requested points. FEM is designed to provide accurate interpolation. Routines are
required for each type of element supported in the simulation.

There is a problem for DG simulations. Many of the numerical techniques used for parti-
cle/streamline integration assume continuous field data. It is not clear what will happen to the
results when there are jumps seen at element boundaries. Those techniques like variable step Runge-
Kutta integration will fail. In fact, the concept of a streamline in a discontinuous simulation may
not be well defined.

4.3 Status

The student performing much of this effort, Michael Brasher, graduated with his Masters degree in
August 2004.

8

nutomated A + Extraction of Secondary Flow Features

Suzanne M Dorney*
NASA Marshall Space Flight Center, MSFC, AL 35812

suzanne.m.dorney@nasa.gov

Robert Haimes'
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology, Cambridge, MA 02 139
haimes@mit.edu

ABSTRACT

The use of Computational Fluid Dynamics (CFD) has
become standard practice in the design and
development of the major components used for air
and space propulsion. To aid in the post-processing
and analysis of CFD results, many researchers now
use automated feature extraction utilities. These tools
can be applied in order to detect the existence of such
features as shocks, vortex cores and separatiodre-
attachment lines. The existence of secondary flow is
another feature of significant importance to CFD
engineers because it highlights regions of increased
losses. Although secondary flow is relatively well
understood there is no commonly accepted
mathematical description of it. This paper will present
a definition for secondary flow and one approach for
automatic detection and visualization of this feature.

INTRODUCTION

The use of Computational Fluid Dynamics (CFD) has
become standard practice in the design and
development of the major components used for air
and space propulsion. Many of today's advanced
computer simulations create datasets containing as
many as a billion pieces of information for a single
steady-state run. Clearly, transient simulations of the

same spatial fidelity stress the available computer
resources. The sheer size of this data results in an
exceedingly difficult and time-consuming analysis
process.

The task of interrogation and interpretation of this
voluminous information is required so that the
knowledge contained within the simulation can be
extracted. The problem is becoming more significant
as improvements in computational performance result
in these large-scale simulations becoming more
commonplace. Today, computational performance is
increasing an order of magnitude every 3.5 years.
Simulations once used only for exploration are now
available during design and parametric studies.

Traditional interactive visualization is used to probe
the data in order to locate and identify physical
phenomena, or to identify limitations in the
simulation process. However, as the frequency of the
large-scale simulations increases in the design
process, new approaches must be developed to enable
the design engineer to process the information in a
timely fashion. Specifically there needs to be closer
integration of the traditional analysis stages (pre-
processing, solver and post-processing). One scenario
is to employ visualization throughout the simulation
process.

* Computer Scientist.
+ Principal Research Engineer.

1

American Institute of Aeronautics and Astronautics

Fluid flow features such as vortices, separation,
boundary layers and shocks are items of interest that
can be found in the results obtained from CFD
simulations. Most visualization systems provide users
with a suite of general-purpose tools (e.g.,
streamlines, iso-surfaces, and cutting planes) with
which to analyze their datasets. In order to find
important flow features, users must interactively
explore their data using one or more of these tools.
Scientists and engineers that use them on a regular
basis have reported the following drawbacks:

Exploration Time -- Interactive exploration of
large-scale CFD datasets is laborious and
consumes hours or days of the
scientistsfengineers time.

Field Coverage -- Interactive visualization
techniques produce output based on local
sample points in the grid or solution data.
Important features may be missed if the user
does not exhaustively search the dataset.

Non-specific -- Interactive techniques usually
reveal the flow behavior in the neighborhood of
a flow feature rather than displaying the feature
itself.

Visual Clutter -- After generating only a small
number of visualization objects (e.g.,
streamlines, cutting planes, or iso-surfaces) the
display becomes cluttered and makes visual
interpretation difficult.

It is clear that these tools do not directly answer the
questions of the CFD investigator. An expert is
required to infer the underlying fluid flow phenomena
from the imagery supplied. Getting a more specific
answer is required. Direct fluid feature extraction has
the following advantages over these exploratory
visualization tools:

Deterministic Algorithms -- If there are no
“parameters” that the user need adjust, then no
intervention is required.

0 Fully Automated -- The analysis can be done
off-line in a batch computation. It can be used
directly by a solver to adapt the mesh to better
resolve the feature.

Local Analysis -- These schemes, where
possible, perform only local operations.
Therefore, the computations for each cell are
independent of any other cell and may be

performed in parallel. This is clearly
advantageous in distributed memory compute
arenas.

Data Reduction -- The output geometry is
several orders of magnitude smaller than the
input dataset. This is an important
characteristic for the size of a resultant output.
High fidelity spatial and temporal results of the
feature extraction can be stored on disk for non-
interactive co-processing environments. This is
usually not possible for the entire transient
simulation. A beneficial side effect is that
playback is rapid (the extraction process is done
and the data has been distilled to salient
information). Allowing for the playback within
an interactive system gives the user the ability
to adjust the viewing angle of the resulting
image, this cannot be done with a static movie.

0 Quantitative Information -- Precise locations for
the flow features are extracted. Also,
classification and measures of strength can be
reported.

The results of feature extraction can be viewed in a
three-dimensional (3D) interactive visualization
environment and can be used in conjunction with
interactive visualization tools. Feature extraction tools
are now being used in parametric studies where tens
or hundreds of simulations are run for the same design
with subtle changes to the structure or flight
conditions. These tools can be used to detect the
existence of such features as shocks [l], vortex cores
[2], recirculation zones [3], boundary layers [4] and
separation and re-attachment lines [5]. All of these
feature extraction algorithms have been collected
together into a single s o h a r e toolkit: FX [6].

The existence of secondary flow is another feature of
significant importance to CFD turbomachinery
engineers. The identification of secondary flow can
highlight areas of stress and loss. Although the
concept of secondary flow is relatively understood,
there is no commonly accepted mathematical
definition. Because of this it has been extremely
difficult to develop an automated feature capability
for the identification of secondary flow. This paper
will present a formal definition for this concept and
one approach for automatically detecting and
visualizing secondary flow. In addition to the
definition of secondary flow this paper will discuss
how such an automated feature extraction utility was
developed and used in the post-processing analysis of
CFD simulations. Of particular interest is the

2

American Institute of Aeronautics and Astronautics

.

application of this tool to add insight to the fmal
analysis.

BACKGROUND

The concept of secondary flow in turbomachinery is
generally thought of as any flow that is not in the
direction of the primary flow. An example of this
vague definition is shown in Fig. 1. The vortices
shown in the figure are examples of secondary flow as
the primary flow direction is directly between the
blades. Some attempts at rigorously defining this idea
include:

point can be generated. By adjusting the position of
this surface the best fit can be found. This surface can
then be used to view the secondary flow by projecting
the vector field data onto the surface.

The goal here is to calculate the mass-averaged
quantities in the channel. This should be done on a
grid plane or a cut through the passage that is
orientated so that all bounds of the cut are walls (if
possible). The following can be done with either a
plane (all surface facets have the same normal n) or an
analytical surface where the normal for cut facets can
change.

Compute surface integrals:

(1)

(2)

(3)

-

M = [pi . i]dA
Due to viscous effects, end walls divert - -

q o = M / A

... component of absolute vorticity in the

Secondary flow in broad terms means flow at
right angles to intended primary flow [8].

primary flow produced by blades and vanes;

direction of the relative streamline [7]. A = I ~ & A

to give rise to what has-come to be called
secondary flow [9].

Of the three definitions listed above only [8] provides
a definition that could be made operational. What is

define. Unfortunately by the time we get a CFD

-
where A is the area, vector,

4' is the velocity vector and p is density. M is the

is the surface
required is the notion of primary flow, which we can -

-
solution the notion of intended is lost. -

mass-averaged flux, q o is the mean velocity and Xo
The desire to view perturbations from the primary
flow direction can give insight into the viscous,
reverse flow and vortical effects that deviate from the
design. To this end it is obviously desirable to be able
to generate two-dimensional vector plots that display
the secondary flow given a traditional CFD solution.

Secondary flow plots are usually displayed in a
passage between blades or just downstream from the
trailing edge. The arrows are generated from a fiame
of reference that is relative to the passage in question
(i.e., absolute for fixed rows and moving for rotors).
This points to a difficulty in areas between stators and
rotors: what is the appropriate frame of reference?
Because of this ambiguity the frame of reference is
specified by the user in the final implementation.

ALGORITHM

It would clearly be desirable to have a scheme that
could maximize the primary flow through a

is the mass-averaged center of the flow.

Newton-like Iteration to Maximize Primary Flow

4

By selecting various cuts that pass through Xo we
can adjust the normal (in the case of a simple plane)
in an iterative loop so that we maximize qo (the
velocity perpendicular to the plane):

-D

n = 1401
Note that a new set of surface integrals is computed
during each iteration. This can also change the

position Xo .
-

Using a planar cut this technique takes about 3 to 4
iterations to converge (i.e., the normals returned differ
by some suitably small factor). This Newton-like
convergence is most always seen unless the planar cut
is adjusted so that a new portion of the flow field is
exposed.

constructed surface. This be done by defining a
pivot point in the channel that reflects the centroid of
the passage or flow. A surface that goes through the

When converged, this provides a view of the data that
displays secondary flow when the velocity
component is removed.

3

American Institute of Aeronautics and Astronautics

DISCUSSION

In practice this a lgori th works well, but did require
a number of operational adjustments. These included:

Passage of Interest

The fast cut algorithms are based on Marching Cubes
[lo] and are performed on a single 3D element at a
time. The result is a set of disjoint polygons that
reflect the portion of the surface that cuts through the
cell. The notion of where in the domain the fragments
come from is usually lost. If the simulation contains
more than a single passage, the cut data can easily
contain fragments from elsewhere in the simulation.
This will corrupt the primary flow calculation in that
we are no longer focused on a single passage.

The solution is to reconnect the fragments into
complete (and bounded) surfaces. Once this is done
the location of a seed point can be used to specify
which bounded surface to use. Only those polygons
that are within the same bounded surface as the
specified seed point are used in the calculations.

The cut algorithm used constructs the surface in a
Finite-Element sense (that is, a list of nodes that
reflect the 3D edges being cut is constructed and the
polygons refer to indices in that list). The
reconnection is performed via a polygon side-
matching algorithm based on the indices (not floating
point locations). This is unique and robust. Any side
that is seen by two polygons is interior to the region.
A side with only a single polygon is bounding the
region.

Multi-Block Simulations

In multi-block simulations the volumes represented
by the blocks can abut or overlap. The individual cell
definitions are usually block specific so that even if
the blocks maintain a larger contiguous volume, it is
usually not apparent by the time one looks at the
fragments from the Marching Cubes results. When
reconnecting the regions the results will reflect the
block boundaries and not the actual bounds of the cut.
The regions need to be placed back together.

When performing streamlining, it is traditional to use
the “IBlank” data to inform the software how the
blocks are connected. When one pierces a cell on a
face where the “IBlank” data indicates that a jump to
another block is required, the “IBlank” index contains
the accepting block. Initially, this data was used to

attempt to flood the region from the target surface
fragments to connecting blocks. This was found to be
unreliable.

A much more expensive technique was developed.
This involved producing a bounding-box around each
region as a first step. All regions (that have not been
included) and have bounding boxes that overlap the
start region are examined. Each point on the exterior
of the start region is compared to all fragments of the
candidate regions. If it is found that any point is
interior, then the new region is considered part of the
calculation and this process is then recursively applied
where this candidate becomes the start region.

In this way the seed point fills all connecting and
overlapping areas and the calculation can proceed on
that “passage”.

Tip Leakage Simulations

When performing this secondary flow algorithm on a
simulation that displays tip leakage there is a natural
connection between passages. When using the flood
algorithm described above there will be spilling into
other connected passages. This will corrupt the
primary flow calculation.

This problem has been taken care of if the simulation
is multi-block and there are individual blocks that
represent the tip flow regions. The flooding can be
“dammed” by informing the technique not to use
certain blocks as candidates.

Frame of Reference

In multi-stage calculations care needs to be taken so
that the algorithm sees data in a consistent frame of
reference. This means that when looking at the
secondary flow in a rotor, all velocity field values
should be in the rotating frame. It is important that the
data in the stators be transformed so that the technique
does not see any discontinuities in the velocity field.

This then means that if one were to traverse the
machine from upstream to down that there will be a
number of changes of reference. These should be
done while the resultant planar cut is in the zone
between blades.

IMPLEMENTATION

The algorithms for the detection of secondary flow
features were implemented in C in the Feature
extraction toolkit FX [6] . This toolkit, unlike most

4

American Institute of Aeronautics and Astronautics

~~ -~

visualization systems, is lightweight because
drawing andor GUI functions are supported.

no
In

genera< the input is the CFD solution and output is
various forms of geometry. The following entry point
has been added:

FX-MEANFLOW (XPOS, WORM, DAM)

float XPOS [3] -- On input this is the position
that sets the plane given the normal WORM. On
output, the mass averaged position on the planar cut
is returned.
float mom [3] -- On input this is the normal
that sets the family of planes to use to produce the
cut. On output W O R M is filled with the mass
averaged velocity through the cut.
int *DAM -- Pointer to the status of each block
(for multi-block cases) to act as a “dam” for the
flooding procedure. Zero indicates that flooding
through the block is acceptable; a one is the flag to
not use this block. NOTE: may be NULL to specify
no “damming” or for non multi-block cases.

This subroutine, given the start position and plane
normal, computes the mass-averaged “center” of flow
and the mass averaged velocity. This is essentially a
single iteration in the maximization of the primary
flow through the surface. Fixing the pivot point is
controlled by the position specified in XPOS. The
position can be made stationary by resetting the
values to the fixed position after each iteration. This
will allow for the examination of secondary flow in
many contexts (for example, picking points along a
streamline, one can get the sense of the secondary
flow as seen by a traveling fluid “particle”).

A GUI was developed using C++, OpenGL, and QT
to interact with FX for the specification and eventual
visualization of the secondary flow features. This
system was used to generate all of the images shown
in this paper.

The ability to calculate and display secondary flow
vectors was added to an interactive visualization
system. The initial input to the system are the names
of the geometry and solutions files and a specification
of the surfaces that are to be displayed. In this manor
the reference geometry of a simulation is generated
and displayed before any additional visualization is
done. One such initial image is shown in Fig. 2. The
user has the capability to adjust the view of the image
by translating, rotating, and scaling the image. In
order to calculate the secondary flow features an
additional panel is used. This panel is shown in Fig.
3. The user can specify the location of the pivot point

and the normal direction of the initial plane. Figure 4
shows an initial specification of the secondary flow
plane. The plane is displayed in blue and the yellow
cross hair indicates the initial pivot point. From this
panel the user then initiates the calculation of the
primary flow plane. Once the resulting image appears
the user can then adjust how the secondary flow
vectors are displayed. The size of the display grid,
the number of grid points and the vector length factor
can all be modified through this panel. What images
are displayed in the viewing window are also
specified with this panel. The display of the initial
plane and the pivot point can be turned on and off.
The user also has control of the display of the contour
plane and the flow vectors. The color of the vectors
and the tuft points can also be modified. Figure 5
shows the calculated secondary flow plane in its
position relative to the two blades. Figure 6 shows a
close up view of the calculated secondary flow plane.
The contours shown on the plane are those of density.

It is also possible to generate an MPEG animation by
using this system. Multiple frames are generated by
specifying a path (either using physical coordinates or
computational coordinates) where the initial pivot
points are to be placed for each image. The panel
used to specify these parameters is shown in Fig. 7.
In addition to the parameters specified in the panel
shown in Fig. 3 the user is given the option to have
the resulting flow plane placed in the center of the
screen parallel to the viewer.

RESULTS

This system was first tested on the results of an
analysis for an injector chamber, and then used to
analyze the results of a simulation of an axial turbine
from a turbopump. Figure 8 shows the initial
geometry of the injector chamber and the injector
holes. This simulation was done on one quarter of the
complete chamber. Figures 9 and 10 show the
secondary flow vectors projected onto a density
contour surface near the injectors. An animation was
generated that showed how the secondary flow
diminished as the flow moved down the chamber.
The application of this system to the injector chamber
is important because the amount of secondary flow
and swirl (i.e., flow mixing) within the chamber
controls the burning characteristics within the
chamber.

The system was also used on a distinctly different
geometry that of an axial-flow turbine stage from a
notional rocket turbopump. Figure 11 shows three
images that highlight the flow through one rotor

5

American Institute of Aeronautics and Astronautics

--

passage of the turbine. The image on the left is a
vector plot that shows the direction of the primary, or
core flow. The image in the middle is the result of
calculating the plane that accounts for the primary
flow at a location near midchord of the rotor. This
plane contains the projected vectors (overlaid on
contours of density) that represent the secondary flow
in this region. The vectors are anchored at the black
tuft locations and the direction of flow is away from
the tuft. The image on the right is a close up view of
the secondary flow. The flow in this image is
consistent with the expected results found in the
diagram shown in Fig. 1. Both figures show a
horseshoe vortex, which emanates from the hub
endwall. In addition, Fig. 11 highlights the tip
clearance leakage vortex. Figure 12 shows a similar
set of results further downstream. The position of the
plane is nearly perpendicular to the surface of the
rotor. The secondary flow vectors shown in the right
image clearly show the tip clearance leakage vortex
and movement of the endwall vortices towards
midspan. An animation was also created that shows
the secondary flow for a series of pivot locations
along the suction side of the rotor blade. Figure 13
shows one frame from this animation. The image on
the left shows both a stator and a rotor blade to
establish the location of the primary flow plane within
the simulation. The image on the right is a close up
view of the resulting primary flow plane displaying
secondary flow vectors.

CONCLUSIONS

A set of tools has been developed to aid in the
detection and visualization of secondary flow features
in CFD results. The interactive tool provides for a
platform to display several aspects of the geometry
and the flow solution. The ability to determine the
primary flow direction and then display secondary
flow features has been found to be helpful in the
analysis of an injector chamber and an axial flow
turbine.

AKNOWLEDGEMENTS

Portions of his work was performed under NASA
grant NAG8-1872.

REFERENCES

1. Lovely, D. and Haimes, R., “Shock Detection from
Computational Fluid Dynamics Results”, AIAA Paper
99-3285, June 1999.

2. Sujudi, D. and Haimes, R., “Identification of
Swirling Flow in 3-D Vector Fields”, A I M Paper 95-
1715, June 1995.

3. Haimes, R., “Using Residence Time for the
Extraction of Recirculation Regions”, AIAA Paper
99-3291, June 1999.

4. Basket, L, and Haimes, R., “Feature Extraction of
Shear Layers”, AIAA Paper 2001-2665, June 2001.

5. Kenwright, D., “Automatic Detection of Open and
Closed Separation and Attachment Lines”,
Proceedings of IEEE Visualization ‘98, October 1998.

6. Haimes, R., “FX - Fluid feature extraction tool-
kit”, http://raphael.mit.edu/fx.

7. Hawthorne, W. R., Cambridge University
CUED/A-Turbo/TR 63, 1974.

8. Cumpsty, N. A., ‘Compressor aerodynamics’
Longman ISBN 0-582-01364-X page 316, 1989.

9. Bradshaw, P., 1996, The Bradshaw quote is from
the paper by L.S. Langston (reference 2) ‘Secondary
Flows in Axial Turbines - A Review’ annals New
York Academy of Sciences, May 2001.

10. Lorensen, W., and Cline, H., “Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm”, Computer Graphics (SIGGRAPH 87
Proceedings) 21(4) July 1987, p. 163-170.

6

American Institute of Aeronautics and Astronautics

CASCADE ENDWALL FLOW STRUCTURE

Inlet boundary
layer flow

.
-J

-. .

/

'>

/ '* . -,, leg horseshoe
vortex (becomes ,'' Suction side '-, '.,

leg horseshoe vortex ', passage vortexl /' ,/' '. '1
-, '

-., '.
-. //" -\,, \.,.,

\\ 1. -. .\-.J// .
Figure 1: Example of Secondary Flow

Figure 2: Initial Image

7

American Institute of Aeronautics and Astronautics

;econdary Flow Plane Panel
- Current Plane

1 .oooooo - 1 '

-

.Vector Length Factor

Figure 3: Secondary Flow Control Panel

8

American Institute of Aeronautics and Astronautics

Figure 4: Initial Position and Pivot Point of Secondary Flow Plane

Figure 5: Calculated Secondary Flow Plane
9

American Institute of Aeronautics and Astronautics

u

.

Figure 6: Close Up View of Vortices

10

American Institute of Aeronautics and Astronautics

- output Fiename (mpg) I

I FmP !

9 Use GeomeMe Vaiues
I- Startlnn Pivot Polnt Ix Y 21,- Startlna Pivot Point farid i i k)

Q Use Computational Values

I j pCjo.o~?'il il"rc"r'!
I i l 1

Endlng Pivot Point (x y z) i I

-

i

:tors
8 3 Dimensional

@ Gray @ White

isT AutoPo: ritlon Plane

Figure 7: Animation Control Panel

1 1

American Institute of Aeronautics and Astronautics

.

Figure 8: Geometry of Injector Chamber

Figure 9: Secondary Flow Vectors Projected onto Density Contour Surface

12

American Institute of Aeronautics and Astronautics

.
c

Figure 10: Full Image of Secondary Flow Vectors

Figure 11: Vectors Showing the Primary flow Direction (left), Position of Secondary Flow Plane (middle)
Secondary Flow Image (right)

13

American Institute of Aeronautics and Astronautics

Figure 12: Position of Primary Flow Plane (left) and Close Up View of Secondary Flow Results (right)

(r\ k

Figure 13: Image from Secondary Flow Animation

14

American Institute of Aeronautics and Astronautics

Rendering Planar Cuts Through Quadratic and Cubic Finite Elements

Michael Brasher* Robert Haimest

Aerospace Computational Design Laboratory
Massachusetts Institute of Technology

ABSTRACT

Coloring higher order scientific data is problematic using standard
linear methods as found in OpenGL. The visual results are inaccu-
rate when there is a large scalar gradient over an element or when
the scalar field is nonlinear. In addition to shading nonlinear data,
fast and accurate rendering of planar cuts through parametric ele-
ments can be implemented using programmable shaders on current
graphics hardware. The intersection of a planar cut with geometri-
cally curved volume elements can be rendered using a combination
of selective refinement and programmable shaders. This hybrid al-
gorithm also handles curved 2D planar triangles.
CR Categories: G.1.8 [Numerical Analysis]: Partial Differen-
tial Equations-Finite Element Methods; 1.3.3 [Computer Graph-
ics]: Picturdmage Generation-Line and curve generation; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism-
Color, Shading, Shadowing, and Texture;
Keywords: Higher Order Elements, Programmable Shaders, Cut-
planes

1 INTRODUCTION

Numerical methods are widely used throughout academia and in-
dustry to solve physical problems when experimental data is diffi-
cult to obtain. The details of these methods can vary greatly, but
they all essentially solve a set of governing equations by discretiz-
ing the domain of interest and solving an analogous formulation at
the discrete points or nodes. Once a solution has been generated for
these nodes, then data over the entire domain can be obtained by
interpolation. The simplest way to interpolate is to assume linear-
ity within each cell based on the vertices that support that element.
There are a number of ways available to then view this data, since
most visualization techniques are based on the assumption of lin-
ear interpolation. However, there are many situations in which it
is advantageous to solve the discrete equations using a non-linear
basis or higher order elements [4, lo]. This can mean using any-
thing from the polynomial Lagrange basis to a hierarchical basis
or spectral elements. One obvious difficulty with using higher or-
der numerical methods is that there is no simple way to visualize
the data in its native form (since most current visualization soft-
ware uses a linear basis). This renders higher order methods much
less useful. Understanding of numerical results and new insight is
often only possible when one can accurately visualize the massive
amounts of data produced.

Accurate rendering of nonlinear data cannot be performed ef-
ficiently using only the standard OpenGL API, since all OpenGL
primitives are inherently linear. Higher order data can be interpo-
lated and rendered quite simply and quickly by utilizing the flexibil-

* mbrasher@mit.edu
haimes@mit.edu

iiy of modem graphicai processing units (GPiisj. In addition to ren-
dering surfaces, one important technique used in scientific visual-
ization is the generation planar cuts through 3D field data. This can
be accomplished through a combination of selective refinement of
the elements and accessing programmable shaders inside the GPU.

2 PREVIOUS WORK

3D graphics APIs like OpenGL are designed to use planar prim-
itives because of the simplicity of the resulting algorithms. This
ability to render linear elements can be leveraged to visualize non-
linear surfaces through polygonization, which essentially translates
the higher order surface into one that is piecewise linear. This
method was used in [I] to render parametric surfaces, while an
adaptive refinement method was used in [l l] to subdivide implicit
surfaces. This was then generalized to handle both implicit and
parametric surfaces with a multi-resolution hierarchical structure in
[12]. These methods are able to sample the higher order data in way
that can be handled by traditional visualization algorithms (i.e. at
the end linear elements are produced).

A hierarchical approach was also used by [6] and [13] in the di-
rect visualization of higher order data. In [13], volume visualization
was accomplished by ray casting through both straight-edged and
curved quadratic elements. Isosurface extraction was performed by
approximating the surface by quadratic patches in parameter space,
transforming them to physical space, and rendering the resulting
quartic functions through higher order patch rendering in hardware.
Texture shaders and register combiners were used in [7] to visualize
higher order hexahedra. The hardware limitations of using texture
shaders and register combiners can be avoided by instead using a
fully programmable shading language like Cg [3].

3 DISCONTINUOUS FEM

One popular group of numerical techniques, the Finite Element
Methods (FEM), are particularly convenient when dealing with
complex geometries or unstructured computational meshes [lo].
FEM simplifies the solution scheme by mapping every element in
the mesh to a master reference element, and then scalar interpola-
tion can be performed using shape functions as a basis. Regardless
of the basis used in the computational solver, the data can be easily
converted to any other basis of the same order, so only the Lagrange
basis will be discussed. Furthermore, only simplicial elements will
be considered.

When rendering continuous data, neighboring elements share
both the location and field data of common nodes. The use of col-
lected primitives (polytriangles, quad meshes and etc.) can speed
up the display time since the support data needs to be passed along
the graphics pipeline fewer times. However, the direct goal of this
research was to visualize flow solutions generated using the Dis-
continuous Galerkin (DG) method [4], [2]. As such, any scheme
developed should be able to naturally handle discontinuities (at el-
ement faces) in the scalar fields being visualized. The simplest way
to accomplish this is for each element to independently store data

for all of its basis nodes, similar to [t i] . Even though the physical lo-
cation of shared nodes is the same between neighboring elements,
nodes must be respecified for each element in which they appear.
The goal is to have a method that allows for easy handling of both
continuous and discontinuous data with the acknowledgement that
there will be some lose of the speed benefits in comparison to the
us= VI Lollected primitives Cui iuiliinuous data.

3.1 Reference Element Interpolation

*

-e - .
Figure 2: pz Shader Figure 3: p3 Shader Figure 4 p4 Shader

In general, a triangular element T has a scalar interpolant of order p
and q degrees of geometrical freedom. The degrees of freedom de-
termine if and how the sides of T are curved, and the order of inter-
polation determines how many nodal values of the scalar function
are needed to specify the interpolant. For example, a p3q2 trian-
gle would have a cubic polynomial scalar interpolant and quadratic
geometry.

Using the Lagrange basis, every element in the mesh can be
mapped to a reference element. The reference coordinates, [, are
aligned so that the component {i is 1 at vertex i of the reference el-
ement and 0 at all other vertices. Note that there are 3 reference co-
ordinates in.2D and 4 reference coordinates in 3D. The extra degree
of freedom is removed by requiring that the coordinates identically
sum to I , i.e. ti = 1. The nodal shape functions @i are defined so
that at each node nj:

Given a scalar function with nodal values si at node ni, the value
of the scalar interpolant s({) at a point t is given by:

It is convenient to scale the nodal values so that the scalar inter-
polant is contained in s E [0,1]. Once the value of the scalar in-
terpolant is found at a point, the color at that point is defined by
some arbitrary colormap. One standard choice of a colormap is the
spectral colormap shown in fig. 1.

0.0 0.25 0.5 0.75 1 .O

Figure 1: Spectral Colormap

In addition to nonlinear scalar data, the geometry of the element
can be curved. Only the coordinates of each node in physical space,
pi = {x i ,y i , z i } , need to be specified, and then the geometry of the
element is interpolated in the same manner as the scalar field using
eq. 2. As a matter of practice in computational meshes, there will
be q > 1 elements conforming to the curved boundaries and linear
q = 1 elements on straight boundaries and in the interior. At times
q > 1 interior elements may be seen when there is a stretched mesh
near a curved boundary. This ensures positive volumes and well-
behaved interpolation.

3.2 Dimensional Hierarchy

Given physical coordinates at the nodal points, the p x reference el-
ements map to some curved region in physical space, called a px
tetrahedron in 3D, a px triangle in 2D, and a px line in 1D. The
four faces of a px tetrahedron can be mapped to the 2D reference
element, so each face can be described as a px triangle. Similarly,
the three edges of a px triangle can be described as a px line. Thus
the simplicial elements form a dimensional hierarchy where a p x
simplex of dimension n contains px simplices of dimension n - 1.

This concept of a diniensional hierarchy is not restricted to the
faces and edges. Any planar polygon in the 3D reference space can
be triangulated into curved triangles, and any line segment in the
2D reference space can be described as a higher order line. How-
ever, not all curved regions can be described as a px line, triangle, or
tetrahedron. Any nonlinearity in the reference space will be com-
pounded in the mapping, and the resulting interpolation will not be
P x .

4 SHADING PARAMETRIC ELEMENTS

In order to visualize a parametric element with scalar values, si, at
each node, eq. 2 must be implemented in some manner. OpenGL
alone can only do this by refining the triangle or generating a texture
map. Both of these methods become extremely slow as the num-
ber of triangles increases. An alternative is to use the progamma-
bility in the GPU exposed by graphics languages like Cg. This
is where great performance gains can be obtained. The GPU can
inherently use the parallelism in these operations because the ras-
terization phase generates a pixel at a time (with no dependence on
neighboring pixels). The processor can parcel out each pixel in the
fragment to the number of raster engines available in the specific
graphics hardware.

Eq. 2 can be implemented in a fragment shader by defining tex-
ture coordinates at each vertex as the vertex’s position in reference
space, g, and then evaluating the shape functions in the fragment
shader. The results of this shader on one triangle is shown in fig. 2.
Figs. 2, 3, and 4 show the results for the pz , p3. and p4 shaders
respectively. Note that Gouraud coloring would produce a constant
color triangle for each case.

Because Gouraud shading interpolates in color space, coloring
artifacts are seen when using the traditional OpenGL pipeline to
render triangles with large gradients. This problem is avoided in
the fragment shader because full scalar interpolation (even for p1)
is performed and the color applied as a last step via the colormap
data.

4.1 Performance

Evaluating the p~ interpolation in the fragment shader involves
more work than standard Gouraud shading. But as the number of
vertices in the scene increases, the cost of transforming the vertices
(which in most cases cannot run in parallel) overwhelms the ex-
tra cost of the fragment shader. As shown in fig. 5, when drawing
4050 triangles, Gouraud shading is 4 times faster than p z inter-
polation done in a programmable shader, but when the number of
triangles is increased to 129600, Gouraud shading is only slightly
faster than Cg. When drawing 4050 triangles, 1 level of refinement
is faster than the Cg. When drawing more triangles however, the
programmable shader is faster than 1 level of refinement and orders
of magnitude faster than higher levels of refinement. Considering
that programmable shaders are as accurate as refining to the pixel
level, it is clear that programmable shaders represent a significant
improvement in visual accuracy while running at nearly the same
speed as standard linear shading. This is the compelling argument

* '

Figure 5: Performance of p2 Interpolation

for the customized use of GPUs in handing non-linear interpola-
tion. Note: the run times were generated on a P4 2.53 GHz pro-
cessor with 1Gb of memory and an nVidia GeForceFX 5800 ultra
graphics card running under LINUX.

5 CUTPLANE INTERSECTION

Consider the analytical description of the intersection of a plane
cutting through a geometrically curved 92 or 93 parametric domain.
This intersection is the union of intersections with each individual
element, so the problem can be simplified to finding the cutplane
intersection with a single element. The discussion will focus on 92
and 43 elements, but the method extends naturally to higher orders
of parametric elements.

A convenient way to describe the cutplane is by some point po on
the plane and the normal to the plane n. Then, the signed distance
d of any point p to the plane is given by

d = (p -po) .n (3)
The distance di from the nodal points to the cutplane is calculated,
and this distance can then be interpolated at any point. Thus, the
intersection of the surface and the plane is the locus of points < that
satisfy the equation d (<) = 0.

5.1 Selective Refinement

In order to accurately visualize nonlinear data, the interpolation
must be sampled at some set of discrete points. Since the inter-
section can be described implicitly, it could be polygonized using
the method of [l 11. While this technique accurately samples a gen-
eral implicit surface, it does not take advantage of the fact that the
intersection is planar.

The simplest approach is uniform refinement (UR), which homo-
geneously subdivides the 92 element, and then treats subelements
as linear by passing them to the standard marching cubes algorithm
[91. However, as suggested by [5], this can be improved upon given
an element T with nodal values si, since the scalar field can be
bounded. Start by defining:

smin = mnisi
s,, = maxisi

then

s(<,-s+ =

I

taking absolute values

I

and noting that for the 3D 92 shape functions,

which leads to the bounds

For the 3D 43 shape functions,

(7)

which leads to the bounds

smi,-2.021s- Is(<) 5s,,+2.021s- ,vE E T (9)

The cutplane M will intersect T if d (<) = 0 at some point <
inside the element. If 0 lies outside the bounds, then T is not in-
tersected, but since the bounds of eqs. 7 and 9 are not tight, T
is not necessarily intersected just because 0 is inside the bounds.
Still, whether or not d = 0 lies outside the bounds can be used as
an effective criterion to reject or further refine in a linear selective
refinement (LSR) scheme, which treats the final subelements as lin-
ear just as in UR. LSR is a more efficient algorithm, since it refines
coarsely away from the intersection, and thus handles many fewer
subelements. By themselves, eqs. 7 and 9 only dictate whether the
element should be refined, they do not specify how. The simplest
method is to break the element into equal pieces, and then reap-
ply the bounds to the subelements. However, a more sophisticated
adaptive refinement algorithm that seeks to refine where the gradi-
ents in the scalar field are highest[6] could be applied.

Even this algorithm is problematic, since the rendering time of
LSR is O(V) where V is the total number of vertices that are sent
through the graphics pipeline. In order to achieve visual accuracy
the refinement must be taken to essentially the pixel level as can
be inferred from the simpler results seen in fig. 5. An alternative
is to utilize the parallel nature of current graphics hardware by per-
forming the necessary data sampling in the programmable shaders.
This allows the nonlinear data to be resolved to the pixel level while
sending much less data down the pipeline.

6

Though there is a great deal of flexibility when dealing with indi-
vidual fragments through it Cg, OpenCL is still constrained in the
construction of geometry. All pixels passed to the fragment pro-
gram are a result of the rasterization of a planar primitive. Let such
a linear primitive which lies in M and which will completely cover
the intersection 1 be the shadow of the intersection. The two main
questions to answer are how to generate a shadow and how to shade
the fragments in the shadow.

SHADOW METHOD FOR CUTPLANE RENDERING

6.1 Determining The Shadow
The shadow primitive should completely cover the intersection so
that there are no gaps seen in the final image. Finding a reasonably
small shadow is more important than finding the absolute minimal
area. The result of too large a shadow is that many pixels will be
discarded. which entails additional work in the GPU. The additional
effort of finding a smaller shadow must be balanced with the benefit
of sending fewer fragments through the GPU's pipeline.

' 0

i

Figure 6: 92 Orthographic
View

\Ci

i

Figure 7: 9 2 Side View

To generate the shadow, the curvec Aement is first bounded wi ...
a congruent 41 tetrahedron C. Call the linear tetrahedron defined
by the four main vertices of the element the reduced tetrahedron R.
Each face of C will be parallel to R, as shown in fig. 6 and fig. 7.
For each main node i of the element, the opposite face is f', the
corresponding face of the reduced tetrahedron is r', and the parallel
face of the congruent tetrahedron is c'. C can then, be described
by the distance 6' that each c' is offset from each r', as shown in
fig. 7. If 6' 2 0, then C always completely contains R. Finding the
minimal values of 6' would require solving:

5 E P
6' = p m p i (<) such that d(<) = 0 (10)

where pi(<) is the projected distance of f i t<) to r', and d(<) = 0
constrains < to M. Finding this maximum value of pi is possible,
since it is just a constrained optimization problem, but it requires
having the parameterization of d(<) = 0 and is not worth the effort.

To simplify the process, remove the restriction that d(5) = 0,
and try to ensure that ci lies outside the entire curved face fi. . Let
a' and B' be disjoint sets of nodes, where the main nodes of r' "e
in ai and the other nodes on f' are in B'. For a q2 element, B' is
just the set of mid-edge nodes on f'. and for a (13 element,JY is the
set of the 6 mid-edge nodes and the center node. Also, p) = 0 for
j E ai since the projected distance to a plane of the three points that
define that plane is zero. Let:

Pmar = max(maxpfi,O) (11)
J @ '

then pi can be bounded by:

for a 2D q 2 triangle:

This provides a quick way to size the congruent tetrahedron while
retaining the property that. C contains the entire cutplane intersec-
tion, since the bound on 6' in eq. 14 ensures that c' will at worst be
tangent to f'.

Now, after the congruent tetrahedron is found for a particular
curved element, the standard linear cutplane algorithm is applied to
C to determine the shadow primitive. One problem with this ap-
proach is that it can sometimes generate a shadow for an element
that does not intersect M (e.g. C has one comer clipped by the
cutplane). This could be avoided by refining the element and reap-
plying eq. 7, but these empty shadows are not a problem in practice.

Generating the congruent tetrahedron for a 43 element is more
complicated, but essentially the same process. A face of a 42 tetra-
hedron can only be purely concave or convex, while it is possible
for the curvature of a 43 face to have an inflection point or curve. A
43 face can be classified into one of three groups based on the signs
of the pfi:

0 Mixed: 3j,k E Bi such that p i > 0 and p i < 0

0 Nonnegative: p i 2 0,

0 Nonpositive: p i 5 0,

V j E Bi

V j E Pi
Define for a 43 face:

For a mixed 43 triangle:

This maximum value occurs at 3 symmetric points, one of which
is:

1 1 - 2 0 1 1 - 2 0 5 + 4 m
5 = (27 ' 27 ' 27

= (0.173,O. 173,0.654) (17)

Call a 43 face nonnegative if all of the p i 2 0. This does not
imply that pi(<) > 0 everywhere, and such a face can be either
convex or inflected. For a nonnegative 43 triangle:

This maximum value occurs at the middle of each edge, that is the
3 points symmetric with:

The bound in eq. 18 can be improved in one special case, when the
projected distance of the center node (j = 9) is greater than eq. 18
applied to the other nodes in 0':

Call a 43 face nonpositive if all the p i I 0. Unlike a 42 face, this
face is not necessarily purely concave. Even if no p i is positive,
pi can still extend past ri. Bounding the maximum value of pi is
a little different for a nonpositive face, since a term p>$j in the
interpolation will only be positive if @, < 0. Therefore define H to
be a step function:

Thus,

Pi I

- -

I

- -

For a 43 face:

This minimum value occurs at the 3 points symmetric with:

* 4-\/7 e ~(0.15,0.15,0.7) (25)
9 ' 9 ' 9

Combining eq. 24 with eqs. 16, 18 and 21 suggests the following
logic to compute 6' for a general 43 element:

2 .128pL if pmin < 0, p- > 0 (Mixed)
-O.632pmh if prnh < 0, p- = 0 (Nonpositive)

1.125~- if prnh 2 0, p$ < #- (Nonnegative)
if prnh 2 0, pb 2 #- (Nonnegative)

(26)
The bound for a mixed 43 element is relatively loose when com-
pared to the bound for a nonnegative. element. Also, a purely con-
cave face would be contained by 6' = 0, as is the case for a 92
element, but the nonpositive bound in eq. 26 will set 6' as some
positive value. However, 43 elements are used in a mesh to con-
form to the curved boundaries of the computational domain, and it
is beneficial for the flow solver for these curved boundaries to be
well resolved. As a matter of practice, very few of the elements
(if any) in a computational grid will be mixed or inflected. In fact,
most will be purely concave or convex, and the looser bounds for
the mixed elements and nonpositive elements will not be necessary.
Assuming that all the elements in a 43 mesh are either purely con-
cave or convex, this suggests the following logic to compute 6' for
a 43 element:

0 if pmin < 0, p- = 0 (Concave)
6' = { 1.125~- if Pmin 2 0, p$ < p- (Convex) (27)

p4 ifprnin 2 0, pb 2 p- (Convex)

6.2 Fragment Shading: Newton-Raphson Inversion

Once the shadow is sent down the graphics pipeline, how are the
fragments shaded? -0 questions must be answered:

1. Should the fragment be rejected (Le. is it outside the ele-

2. How is the fragment colored if it is inside the element?

ment)?

Both of these questions can be answered if the reference coordi-
nates [of the pixel to be rendered are known. The position is in the
element if [2 0, and then eq. 2 can be implemented in the fragment
shader. The reference coordinates will vary nonlinearly in physical
space therefore they can be determined using a Newton-Raphson
(NR) inversion algorithm.

At each pixel, the physical coordinates 3 are known, since that's
what determines the fragment's location via the-modelview trans-
formation. For any reference coordinate guess, &, the position can
be updated using:

where

While this is fairly straightforward, the standard OpenGL shading
just linearly interpolates color values, so the NR algorithm does rep-
resent a significantly larger workload per pixel. However, the only
straightforward way to pass nonlinear data through the OpenGL
pipeline is through texture maps. Texture maps are are prohibitively
expensive to generate for each element, and the additional work of
the fragment shader is small by comparison.

6.3 Rendering Results

The shadow method is able to render curved planar cut intersec-
tions that are topologically similar to linear cutplane intersections.
Fig. 8 shows a triangular cut, where the p2 tetrahedral element is
outlined in black, the congruent tetrahedron is outlined in blue, and
the shadow is shown in green and red. Those pixels that are in the
cutplane intersection are shaded in green, and the pixels that lie out-
side the element are shown in red. The figure is shaded to highlight
the fact that a linear primitive (the shadow) can be used to render
a nonlinear intersection. In a visualization application, the pixels
in the shadow outside the element would be discarded by setting
their opacity to zero, and the actual intersection would be shaded as
in fig. 9. In addition to the two linear cutplane intersections (trian-
gle or quadrilateral), higher order elements can intersect a plane in
complicated ways. The shadow algorithm is easily able to capture
multiple distinct intersections as shown in fig. 10, and intersections
that cut a face without touching an edge as shown in fig. 11.

6.4 Hybrid Selective Refinement

The majority of cutplane intersections will resemble fig. 8, with rel-
atively few pixels in the fragment being discarded. But in examples
like fig. 10 and fig. 11, a significant portion of the shadow is eventu-
ally thrown away. This extra computational burden can be lessened
by using eq. 7 or 9 to selectively refine the element, and then apply-
ing the shadow algorithm to each subelement. As shown in figs. 12
through 14, this hybrid selecrive refinement (HSR) algorithm cor-
rectly renders the cutplane intersection while requiring much less
refinement than LSR would to produce the same level of accuracy.

Figure 8: Triangular pz Cut w/ Figure 9: Triangular yz Cut
Shadow Shaded

Figure 12: One Hybrid Refinement

Figure 10: Multiple pz Cuts Figure 11: Face Only pz Cut

Also notice that there is some amount of overlap between the shad-
ows, but the reduction in excess fragments more than makes up for
this redundancy.

6.5 HSR for 2D data

All elements found in the solution from a 2D flow solver can be
thought of as occupying a single plane in 3D space. A shadow that
lies in that plane can bound the 2D curved element. This shadow
primitive will be a linear triangle C that is congruent to the reduced
order triangle R of the element, as shown in fig. 15. This is an
extension of the method described in sec. 6.4 where the main dif-
ference when visualizing 2D data is in computing the bounds of the
element. The maximum value of p i (() for a 92 triangle face always
lies at the midpoint.

As with sizing the congruent tetrahedron for a 3D tetrahedral 43
element, the bounds used for a general 2D triangular 43 element are
looser than those actually necessary for elements used in a compu-
tational mesh. The bounds for sizing of 6' for a general element
are:

1 . 3 p L if pmh < 0, p- > 0 (Mixed)
6i= { -0.3 16p~, , if p- < 0, p- = 0 (Nonpositive)

1.125~- i fp -20 (Nonnegative)
(30)

For a 93 mesh, assuming that the edge is either concave or convex,
using:

" = { 1.125~- if pmin 2 0 (Convex) (31)
0 if pmin < 0, p- = 0 (Concave)

will ensure that C completely covers R.

7 APPLICATION TO FLOW SOLUTIONS

The method used to intersect finite elements with planar cuts de-
scribed in previous sections was developed with the goal of visual-
izing flow solutions on unstructured grids in both 2D and 3D. This

Figure 13: Two Hybrid Refinements

Figure 14: Three Hybrid Refinements

Figure 15: Congruent Shadow Triangle

effort supports the work of Project X [4]. The 2D code solves the
Euler equations and the Navier-Stokes equations, while the 3D code

methods and solved using p multigrid with line smoothing.

'e
+ is currently only inviscid. The equations are discretized using DG

d

7.1 2D Viscous Navier-Stokes

The approach to solving the Navier-Stokes equations is the same as
the method to solve the Euler equations, except that the line srnooth-
ing is modified to account for viscous diffusion in addition to con-
vection. The flow around a NACA0012 airfoil at 0" angle of attack
was solved using a grid containing 2264 p1q1 triangles in the inte-
rior and the farfield, and 40 pi43 triangles on the airfoil. Fig. 16
shows the Mach number distribution, which clearly show both the
viscous boundary layer and the trailing wake. Fig. 17 shows a close

Figure 16: NACA0012 Airfoil Mach Distribution

view of the leading edge, while fig. 18 shows the shadow pixels
and outlines the elements. Fig. 19 shows an extreme close-up of
just two elements, which are fairly curved. Even at this size, the
curvature of the element is preserved.

Figure 17: Figure 18: Figure 19: Two E le
NACA0012 Air- NACA0012 Air- ment Shadows
foil Curve foil Shadows

7.2 3D Inviscid Euler

The application of the 3D code is to a straight NACA0012 wing
with a span of 5 chord lengths. The grid used was generated from a
2D airfoil grid, which was then extrapolated into 3D. This produced
a tetrahedral mesh consisting of 91936 p241 interior and farfield el-
ements and 3536 m93 boundary elements around the wing. The
Mach Number distribution is shown along the surface of the wing
in fig. 20. Since the grid is fairly well refined around the airfoil, no
enhancement was necessary to approximate the shape, though the
depth and lighting were modified at each pixel in the fragment pro-
gram to better approximate the curved shape. The farfield boundary
forms a dome around the wing, as seen in fig. 21. Fig. 22 also shows
the position of the cutplane.

The vast majority of the elements in the grid are 91, so the stan-
dard marching cubes algorithm handles intersection. However, all
the elements that either have a face or an edge on the wing sur-
face are 93, so that they can accurately conform to the airfoil shape.
The cuts through these elements were rendered using the shadow
method of sec. 6, using eq. 27 to generate the shadows. The curva-
ture at the wingtip is best handled with 1 level of selective refine-
ment, so this was used throughout. The cutplane position in fig. 22
was used to generate the following Mach cut in fig. 23:

Figure 20: NACA0012 Wing Mach Distribution

Figure 21: Farfield Boundary Figure 22: Cutplane Position

To provide a better sense of the element size involved, fig. 24
shows the outline of all the 93 elements that were cut at the position
shown in fig. 22. Figs. 25 and 26 show the cutplane through the
leading edge, with all the shadow pixels shown in pink. Notice
that there is some overlap of the shadow primitives, but since these
pixels normally get rejected, this is never noticed by the viewer.

Fig. 27 shows the wingtip, with the cutplane at 3 locations ap-
proaching the tip. These cutplane positions were used to generate
images through the Mach field and are displayed in fig. 28. This
shows that the cutplane shadow method is able to correctly render
the planar intersection for even the fairly curved elements at the
wingtip.

8 EXTENSION TO ISOSURFACES

The discussion so far has focused on rendering planar cut intersec-
tions, and not on visualizing isosurfaces. The algorithms to render
each type of intersection for linear elements are the same, and in-
deed, the LSR algorithm should work for isosurfaces. The crucial
difference is that isosurface will not, in general, be planar.

However, it may be possible to render the isosurface with scalar
value, S*, by bounding it with linear primitives. Based on screen
position, x,, of each pixel on the bounding shadow, the depth is
adjusted until the point on the isosurface, x, is found such that x,
lies on top of x (i.e. x and x, have the same screen coordinates but
different depths). To find x, 1s - s* I is first minimized by perform-
ing a search of points inside the element that lie beneath xs, then

Figure 23: Cutplane Through Mach Field

--

9 CONCLUSION

Subdivision algorithms generate exponentially more subelements
as the refinement level is increased, and their performance is
directly tied to the number of vertices being processed. Pro-
grammable shaders leverage the flexibility of modem GPUs to effi-
cie:,:!y samp!c highcr ordci data at each pixel in a powerfir: manner.
Visualizing planar cuts through parametric FEM elements simpli-
fies to knowing the reference coordinates at each pixel, and hav-
ing the ability to use that information to correctly render the scalar
field. The major obstacle is the limitation of having to use planar
primitives to generate pixels for the fragment shader. To overcome

Figure 24: NACA0012 Wing Boundary Elements

Figure 25: NACA0012 Leading Figure 26: A Few Element
Edge Shadows

the fragment can rejected or drawn based on whether or not s = s*.
Performing this search would be relatively expensive, so acceptable
values of s will lie close to S* within some bounds set by the accu-
racy of the search. Under some viewing transforms, the isosurface
can curve behind itself, which means there can be multiple solu-
tions, x, that all lie on top of xs. In this case, the several solutions
should be compared using the depth test to determine which one is
displayed.

The faces of the congruent tetrahedron used to generate the cut-
plane shadow would certainly cover the isosurface intersection,
since it captures the entire element by design. But using those tri-
angles could produce many extraneous fragments. This could be
alleviated by combining the view-based refinement used in [7] and
the selective refinement of HSR to approximate the isosurface in-
tersection.

Figure 27: Cutplane Position Figure 28: Cutplane Through
at Wingtip Mach Field at Wingtip

this challenge, the HSR algorithm bounds the curved intersection
with a shadow primitive, which can then be manipulated in the
GPU. Some pixels will inevitably be discarded, and to minimize
this wasted effort, very coarse selective refinement can be used to
generate several shadow primitives that collectively cover the en-
tire intersection. Thus the HSR algorithm provides an efficient and
functional method to produce and shade planar cuts through higher
order E M data.

ACKNOWLEDGEMENTS

The work presented here was partially funded by NASA grant
NAG8-1872 (Suzanne Domey, technical monitor). Thanks to
Krzysztof Fidkowski and Todd Oliver for providing the grids and
solutions used in this work.

REFERENCES

[I] James H. Clark. A f a r algorithm for rendering parametric surfaces.
Computer Science Press, Inc., 1988.

[2] Bemardo Cockbum and Chi-Wang Shu. Runge-kutta discontinuous
galerkin methods for convection-dominated problem. Journal of Sci-
entific Computing, 16(3):17>261, September 2001.

[3] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The DeJni-
rive Guide to Programmable Real-Time Graphics. Addison-Wesley,
Boston, Massachusetts, 2003.

[4] Krzysztof Fidkowski and David Darmofal. Development of a higher
order solver for aerodynamic applications. 42nd AIAA Aerospace Sci-
ences Meeting and Exhibit. AIAA 2004-0436, 2004.

[5] Mike Giles. Personal Correspondence, July 2003.
[6] B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. Seibert.

Multiresolution visualization of higher order adaptive finite element
simulations. Computing, 70(3): 18 1-204, June 2003.

[7] R. Khardekar and D. Thompson. Rendering higher order fi nite ele-
ment surfaces in hardware. Computer graphics and interactive tech-
niques in Awralasia and South Ear Asia, 2003.

[8] Andrea 0. Leone, Paola Marzano, and Enrico Gobbetti. Discontinu-
ous fi nite element visualization. In CRS4 Bulletin 1998. CRS4, Cen-
ter for Advanced Studies, Research, and Development in Sardinia,
Cagliari, Italy, 1998.

[9] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. Computer Graphics
(Proceedings of SIGGRAPH), 21(4):163-169, 1987,

[IO] P. Solin, K. Segeth, and I. Dolezel. Higher-Order Finite Element
Methods. CRCPress, 2003.

[1 I] Luiz Velho. Simple and effi cient polygonization of implicit surfaces.
J. Graph. Tools, 1(2):5-24, 1996.

[121 Luiz Velho, Luiz Henrique de Figueiredo, and Jonas Gomes. A unifi ed
approach for hierarchical adaptive tesselation of surfaces. ACM Trans.
Graph., 18(4):329-360, 1999.

[13] David E Wiley. Approximation and Visualization of Scientific Data
Using Higher-order Elements. PhD thesis, University of California,
Davis, 6 2003.

